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AN OVERVIEW OF A CRANK NICOLSON 
METHOD TO SOLVE PARABOLIC 

PARTIAL DIFFERENTIAL EQUATION. 
                                                                     Neethu Fernandes, Rakhi Bhadkamkar   Abstract:  In this paper we have discussed the solving Partial Differential Equation using classical Analytical method as well as the 
Crank Nicholson method to solve partial differential equation. We compared both the methods and found that decreasing the time 
step will reduce the error by Crank Nicholson method. The results of the method are obtained by the Scilab programming code. 

———————————————————— 

 

INTRODUCTION 

Partial differential equation has its application in many engineering problems.  Due to the 
advances in the technology there is a constant search for the proper numerical method to solve a 
particular PDE problem.  Crank Nicolson method is one of the numerical methods to solve a 
partial differential equation. 

Consider the following heat equation with c-constant  

𝜕𝜕𝜕𝜕
 𝜕𝜕𝜕𝜕

= 𝑐𝑐2 𝜕𝜕2𝑦𝑦
𝜕𝜕𝑥𝑥2                                               (1) 

With the initial condition u(x,0)=f(x) and the boundary condition u(xmin,0)=0 and 
u(xmax,0)=0.We shall consider a numerical solution that it takes on a grid of x,t values placed 
over some domain of interest. Once we have these values since ‘u’ is assumed to be smooth 
almost everywhere. We can interpolate within the grid to get values for arbitrary x,t.  

Suppose the domain we are working is a rectangular with x ranging from xmin to xmax and ‘t’ 
ranging from 0 to T. Divide [0,T] into n equal spaced intervals at t values indexed by 
N=0,1,2,…..n and [xmin,xmax] into I intervals at x values indexed by i=0,1,2……….I. The length 
of these intervals is k in the time direction and h in the x direction. We seek an approximation to 
the true values of u at the (n+1)X(I+1) grid points. 

Let ui,n denote our approximation at the grid point where x=xmin+ih  and t=nk. A finite 
approximation of the equation (1) with ‘h’ in ‘x’ direction and ‘k’ in ‘t’ direction.  

 1
𝑘𝑘
�𝑢𝑢𝑖𝑖 ,𝑗𝑗+1 − 𝑢𝑢𝑖𝑖 ,𝑗𝑗 � = 𝑐𝑐2

ℎ2 (𝑢𝑢𝑖𝑖+1,𝑗𝑗 − 2𝑢𝑢𝑖𝑖 ,𝑗𝑗 + 𝑢𝑢𝑖𝑖−1,𝑗𝑗 )  (2) 

Let   𝑟𝑟 = 𝑘𝑘
ℎ2 

            Then the equation(2) is given by 

𝑢𝑢𝑖𝑖 ,𝑗𝑗+1 = 𝑢𝑢𝑖𝑖 ,𝑗𝑗 + 𝑟𝑟(𝑢𝑢𝑖𝑖+1,𝑗𝑗 − 2𝑢𝑢𝑖𝑖 ,𝑗𝑗 + 𝑢𝑢𝑖𝑖−1,𝑗𝑗 )   (3) 
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In Crank Nicolson method the difference quotient on the right hand side of equation(3)  is 
replaced by ½ times the sum two such difference quotients at two time rows. 

Therefore the equation (3) can be approximated as 

𝑢𝑢𝑖𝑖 ,𝑗𝑗+1 − 𝑢𝑢𝑖𝑖 ,𝑗𝑗 = 𝑟𝑟
2
�𝑢𝑢𝑖𝑖+1,𝑗𝑗 − 2𝑢𝑢𝑖𝑖 ,𝑗𝑗 + 𝑢𝑢𝑖𝑖−1,𝑗𝑗 � + 𝑟𝑟

2
�𝑢𝑢𝑖𝑖+1,𝑗𝑗+1 − 2𝑢𝑢𝑖𝑖 ,𝑗𝑗+1 + 𝑢𝑢𝑖𝑖−1,𝑗𝑗+1�. 

The resulting equation is  

(2 + 2𝑟𝑟)𝑢𝑢𝑖𝑖 ,𝑗𝑗+1 − 𝑟𝑟𝑢𝑢𝑖𝑖+1,𝑗𝑗+1 = (2 − 2𝑟𝑟)𝑢𝑢𝑖𝑖 ,𝑗𝑗 + 𝑟𝑟(𝑢𝑢𝑖𝑖+1,𝑗𝑗 + 𝑢𝑢𝑖𝑖−1,𝑗𝑗 )              (4) 

Illustration with example 

Consider the following problem 

Solve 𝜕𝜕𝜕𝜕
 𝜕𝜕𝜕𝜕

= 𝜕𝜕2𝑦𝑦
𝜕𝜕𝑥𝑥2 ,   0 ≤ 𝑥𝑥 ≤ 1,      𝑡𝑡 ≥ 0. 

 𝑢𝑢(𝑥𝑥, 0) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢(0, 𝑡𝑡) = 𝑢𝑢(1, 𝑡𝑡) = 0.                   (5) 

In Crank Nicolsonscheme we divide the interval 0≤x≤ 1 in equation(5) into n equal intervals we 
have (n-1) mesh point per time row. Then for j=1 and i=1,2……..n-1 from equation(4) we have a 
system of n-1 linear equations for 9 unknowns values 𝑢𝑢1,1,𝑢𝑢2,1,𝑢𝑢3,1, … … … . .𝑢𝑢𝑛𝑛−1,1 in the first 
time row in terms of initial values 𝑢𝑢1,0,𝑢𝑢2,0,𝑢𝑢3,0, … … … . .𝑢𝑢𝑛𝑛−1,0 and the boundary values 
𝑢𝑢0,1 = 𝑢𝑢𝑛𝑛 ,1 = 0. 

Similarly for j=1,j=2 and so on that is for each time row we have to solve such a system of n-1 
linear equation resulting form  equation (4). 

The matrix form of equation (4) is  

MU=mb 

Where MU=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
2 + 2𝑟𝑟 −𝑟𝑟 0 . . . 0
−𝑟𝑟 2 + 2𝑟𝑟 −𝑟𝑟 0 . . 0
0 −𝑟𝑟 2 + 2𝑟𝑟 −𝑟𝑟 0 . 0
. . . . . . .
. . . . . . .
. . . . . . −𝑟𝑟
0 0 . . . −𝑟𝑟 2 + 2𝑟𝑟⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑢𝑢1,𝑗𝑗+1
𝑢𝑢2,𝑗𝑗+1

.

.

.

.
𝑢𝑢𝑛𝑛−1,𝑗𝑗+1⎦

⎥
⎥
⎥
⎥
⎥
⎤
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mb=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
2 − 2𝑟𝑟 𝑟𝑟 0 . . . 0
𝑟𝑟 2 − 2𝑟𝑟 𝑟𝑟 0 . . 0
0 𝑟𝑟 2 − 2𝑟𝑟 𝑟𝑟 0 . 0
. . . . . . .
. . . . . . .
. . . . . . 𝑟𝑟
0 0 . . . 𝑟𝑟 2 − 2𝑟𝑟⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑢𝑢1,𝑗𝑗
𝑢𝑢2,𝑗𝑗

.

.

.

.
𝑢𝑢𝑛𝑛−1,𝑗𝑗 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

Convergence of Crank Nicolson method: 

This method converges if the following condition is satisfied i.e.,r= 𝑘𝑘
ℎ2 ≤

1
2
. 

Solution Using Analytical method 

Let𝑢𝑢 = 𝑋𝑋𝑋𝑋 

Then by equation (5) 

𝑋𝑋𝑇𝑇′ = 𝑋𝑋′′ 𝑇𝑇here c=1 

By separating the variable    

𝑇𝑇′

𝑇𝑇
=
𝑋𝑋′′

𝑋𝑋
= −𝑝𝑝2 

 𝑇𝑇′ + 𝑝𝑝2𝑇𝑇 = 0and 𝑋𝑋′′ + 𝑝𝑝2𝑋𝑋 = 0. 
∴ 𝑋𝑋 = 𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇 = 𝑐𝑐𝑒𝑒−𝑝𝑝2𝑡𝑡  

The general solution is  

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑒𝑒−𝑝𝑝2𝑡𝑡(𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐵𝐵 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)            (6) 

The boundary condition u(0,t)=0 is applied to (6)  

 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒−𝑝𝑝2𝑡𝑡   (7) 

Now the initial condition 𝑢𝑢(𝑥𝑥, 0) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠is applied to (7)  

we get 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑒𝑒−𝜋𝜋2𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 

Solution by Crank Nicolson  

𝑢𝑢0,𝑗𝑗 = 0. Let us divide the given interval (0,1) into ten equal so that h=0.1 and let k=0.001. 

𝑟𝑟 = 𝑘𝑘
ℎ2 = 0.1 ≤ 1

2
and𝑢𝑢𝑖𝑖 ,0 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ    (i=1,2,3……9) 
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Now we have a set of nine equations in nine unknowns to solve. The results of the Crank 
Nicolson method are obtained by Scilab Programming. 

Scilab Programming 

clc 
clear 
h=0.1; 
k=0.001;d=k/(h*h);n1=10; 
//INITIALISATION OF THE MATRIX M 
fori=1:9; 
   l=%pi*(i)*0.1; 
t(i)=sin(l) 
end 
for u=1:6; 
m(1,1)=2+2*d; 
m(1,2)=-d; 
fori=2:n1-2; 
m(i,i-1)=-d; 
m(i,i)=2+2*d; 
m(i,i+1)=-d; 
end 
m(n1-1,n1-2)=-d; 
m(n1-1,n1-1)=2+2*d; 
m(1,n1)=(2-2*d)*t(1)+d*t(2); 
fori=2:n1-2; 
    m(i,n1)=d*t(i-1)+(2-2*d)*t(i)+d*t(i+1); 
end 
m(n1-1,n1)=d*t(n1-2)+(2-2*d)*t(n1-1); 
for p=1:n1-2; 
for q=p+1:n1-1; 
        k=m(q,p)/m(p,p); 
        m(q,:)=m(q,:)-(m(p,:)*k); 
end 
end 
//FINDING U(i,j) 
t(n1-1)=m(n1-1,n1)/m(n1-1,n1-1); 
for j=n1-2:-1:1; 
        s=0; 
for k=j+1:n1-1; 
        s=s+m(j,k)*t(k); 
end 
t(j)=(m(j,n1)-s)/m(j,j); 
end 
w=u*0.001; 
printf('t=%f     ',w) 
fori=1:n1-1 
printf('%f       ',t(i))     
end 
printf('\n') 
end 
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Comparison of Analytical and the Crank Nicolson method  

At x=0.5 Analytical  Crank Nicolson Error 
At t=0.006 0.94250 0.942959(k=0.01) -4.59x10-4 

0.942958(k=0.02) -4.58x10-4 
     At t=0.008 0.924079 0.924678(k=0.001) -5.99x10-4 

0.924676(k=0.02) -5.97x10-4 
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